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Problem Statement

I Builds cause a (hidden) overhead for teams [2] due to additional maintenance effort

I Neglected build maintenance is the main reason for build breakage [5]

I Build breakage prevents teams from continuing development and is expensive for companies [1]
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(RQ1) What are the reasons for and characteristics of build breakage and fixes?

(RQ2) To what extent can we predict build breakage?

(RQ3) To what extent can we automatically refactor breakage-prone build configurations and repair broken builds?

Reasons and Characteristics of Build Breakage (RQ1)

I Study why builds break based on past changes

I BuildDiff - Tool to extract fine-grained changes from Maven build
configuration files [3]

I Investigation of changes and change patterns to understand the
evolution of build configurations and the impact of changes on the build
result

I Derive quality metrics for Maven build configuration files

I Evaluation through empirical analysis of (open source) repositories

Build Prediction (RQ2)

I Retrieving a build result or the need of a build configuration change in a
revision, usually needs build execution (time consuming)

I Prediction models might help to estimate the build result (and save
time)

I Two approaches
. Build co-change prediction [4]
. Build result prediction

I Evaluation of models on (open source) projects

Build Refactor and Repair (RQ3)

I Use knowledge gained in RQ1 and RQ2 to provide
approaches to improve build configurations

I Refactoring
. Focus on successful builds that can be improved
. Reduce error-proneness of build configuration
. Identify configuration smells
. Provide best practice solutions

I Repair
. Focus on failing builds
. Derive repair strategies from successful repairs

I Evaluation by comparing repairs from our approach with
repairs that developers performed

Expected Contributions

I Datasets containing extracted build changes and build results of the
investigated projects.

I Rules retrieved by empirical evidence for bad and best practices for
build configurations.

I Models to predict build co-changing work items and to predict build
results for commits and work items.

I An approach to automatically refactor breakage-prone builds and repair
broken builds.
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