
Preventing and Repairing Build Breakage
Christian Macho

Software Engineering Research Group, University of Klagenfurt

Problem Statement

I Builds cause a (hidden) overhead for teams [2] due to additional maintenance effort

I Neglected build maintenance is the main reason for build breakage [5]

I Build breakage prevents teams from continuing development and is expensive for companies [1]

Change	

Build	Commit	

Deliverable	

Repair	

RQ1	

RQ3	

RQ2	

(RQ1) What are the reasons for and characteristics of build breakage and fixes?

(RQ2) To what extent can we predict build breakage?

(RQ3) To what extent can we automatically refactor breakage-prone build configurations and repair broken builds?

Reasons and Characteristics of Build Breakage (RQ1)

I Study why builds break based on past changes

I BuildDiff - Tool to extract fine-grained changes from Maven build
configuration files [3]

I Investigation of changes and change patterns to understand the
evolution of build configurations and the impact of changes on the build
result

I Derive quality metrics for Maven build configuration files

I Evaluation through empirical analysis of (open source) repositories

Build Prediction (RQ2)

I Retrieving a build result or the need of a build configuration change in a
revision, usually needs build execution (time consuming)

I Prediction models might help to estimate the build result (and save
time)

I Two approaches
. Build co-change prediction [4]
. Build result prediction

I Evaluation of models on (open source) projects

Build Refactor and Repair (RQ3)

I Use knowledge gained in RQ1 and RQ2 to provide
approaches to improve build configurations

I Refactoring
. Focus on successful builds that can be improved
. Reduce error-proneness of build configuration
. Identify configuration smells
. Provide best practice solutions

I Repair
. Focus on failing builds
. Derive repair strategies from successful repairs

I Evaluation by comparing repairs from our approach with
repairs that developers performed

Expected Contributions

I Datasets containing extracted build changes and build results of the
investigated projects.

I Rules retrieved by empirical evidence for bad and best practices for
build configurations.

I Models to predict build co-changing work items and to predict build
results for commits and work items.

I An approach to automatically refactor breakage-prone builds and repair
broken builds.

References

[1] N. Kerzazi, F. Khomh, and B. Adams.
Why do automated builds break? an empirical study.

[2] G. Kumfert and T. Epperly.
Software in the doe: The hidden overhead of the build.

[3] C. Macho, S. McIntosh, and M. Pinzger.
Extracting Build Changes with BuildDiff.

[4] C. Macho, S. McIntosh, and M. Pinzger.
Predicting Build Co-Changes with Source Code Change and Commit Categories.

[5] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge.
Programmers’ build errors: a case study (at google).

Contact: http://serg.aau.at/bin/view/ChristianMacho/WebHome christian.macho@aau.at


