
Noise and Heterogeneity in Historical Build Data
An Empirical Study of Travis CI

Keheliya Gallaba
McGill University
Montréal, Canada

keheliya.gallaba@mail.mcgill.ca

Christian Macho
University of Klagenfurt

Klagenfurt, Austria
christian.macho@aau.at

Martin Pinzger
University of Klagenfurt

Klagenfurt, Austria
martin.pinzger@aau.at

Shane McIntosh
McGill University
Montréal, Canada

shane.mcintosh@mcgill.ca

ABSTRACT

Automated builds, which may pass or fail, provide feedback to a

development team about changes to the codebase. A passing build

indicates that the change compiles cleanly and tests (continue to)

pass. A failing (a.k.a., broken) build indicates that there are issues

that require attention. Without a closer analysis of the nature of

build outcome data, practitioners and researchers are likely to make

two critical assumptions: (1) build results are not noisy; however,

passing builds may contain failing or skipped jobs that are actively

or passively ignored; and (2) builds are equal; however, builds vary

in terms of the number of jobs and conigurations.

To investigate the degree to which these assumptions about build

breakage hold, we perform an empirical study of 3.7 million build

jobs spanning 1,276 open source projects. We ind that: (1) 12% of

passing builds have an actively ignored failure; (2) 9% of builds have

a misleading or incorrect outcome on average; and (3) at least 44%

of the broken builds contain passing jobs, i.e., the breakage is local

to a subset of build variants. Like other software archives, build

data is noisy and complex. Analysis of build data requires nuance.

CCS CONCEPTS

· Software and its engineering → Software veriication and

validation; Software post-development issues;

KEYWORDS

Automated Builds, Build Breakage, Continuous Integration

ACM Reference Format:

Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh.

2018. Noise and Heterogeneity in Historical Build Data: An Empirical

Study of Travis CI. In Proceedings of the 2018 33rd ACM/IEEE International

Conference on Automated Software Engineering (ASE ’18), September 3ś

7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3238147.3238171

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’18, September 3ś7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238171

1 INTRODUCTION

After making source code changes, developers execute automated

builds to check the impact on the software product. These builds

are triggered while features are being developed, when changes

have been submitted for peer review, and/or prior to integration

into the software project’s version control system.

Tools such as Travis CI facilitate the practice of Continuous

Integration (CI), where code changes are downloaded regularly

onto dedicated servers to be compiled and tested [1]. The popularity

of development platforms such as GitHub and CI services such

as Travis CI have made the data about automated builds from a

plethora of open source projects readily available for analysis.

Characterizing build outcome data will help software practition-

ers and researchers when building tools and proposing techniques

to solve software engineering problems. For example, Rausch et

al. [18] identiied the most common breakage types in 14 Java ap-

plications and Vassallo et al. [26] compared breakages from 349

open source Java projects to those of a inancial organization. While

these studies make important observations, understanding the nu-

ances and complexities of build outcome data has not received suf-

icient attention by software engineering researchers. Early work

by Zolfagharinia et al. [29] shows that build failures in the Perl

project tend to be time- and platform-sensitive, suggesting that

interpretation of build outcome data is not straightforward.

To support interpretation of build outcome data, in this paper,

we set out to characterize build outcome data according to two

harmful assumptions that one may make. To do so, we conduct

an empirical study of 3,702,071 build results spanning 1,276 open

source projects that use the Travis CI service.

Noise. First, one may assume that build outcomes are free of noise.

However, we ind that in practice, some builds that are marked as

successful contain breakages that need attention yet are ignored. For

example, developers may label platforms in their Travis CI conigu-

rations as allow_failure to enable experimentation with support

for a new platform. The expectation is that once platform support

has stabilized, developers will remove allow_failure; however,

this is not always the case. For example, the zdavatz/spreadsheet1

project has had the allow_failure feature enabled for the entire

lifetime of the project (ive years). Examples like this suggest that

noise is likely present in build outcome data.

1https://github.com/zdavatz/spreadsheet

https://doi.org/10.1145/3238147.3238171
https://doi.org/10.1145/3238147.3238171
https://doi.org/10.1145/3238147.3238171
https://github.com/zdavatz/spreadsheet

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

There are also builds that are marked as broken that do not

receive the immediate attention of the development team. It is

unlikely that such broken builds are as distracting for development

teams as one may assume. For example, we ind that on average,

two in every three breakages are stale, i.e., occur multiple times in

a project’s build history. To quantify the amount of noise in build

outcome data, we propose an adapted signal-to-noise ratio.

Heterogeneity. Second, one may assume that builds are homoge-

neous. However, builds vary in terms of the number of executed

jobs and the number of supported build-time conigurations. For

example, if the Travis CI coniguration includes four Ruby versions

and three Java versions to be tested, twelve jobs will be created

per build because 4 × 3 combinations are possible. Zolfagharinia et

al. [29] observed that automated builds for Perl package releases

take place on a median of 22 environments and seven operating

systems. Builds also vary in terms of the type of contributor. Indeed,

build outcome and team response may difer depending on the role

of the contributor (core, peripheral).

In this paper, we study build heterogeneity according to ma-

trix breakage purity, breakage reasons, and contributor type. We

ind that (1) environment-speciic breakages are as common as

environment-agnostic breakages; (2) the reasons for breakage vary

and can be classiied into ive categories and 24 subcategories; and

(3) broken builds that are caused by core contributors tend to be

ixed sooner than those of peripheral contributors.

Take-away messages. Build outcome data is noisy and hetero-

geneous in practice. If build outcomes are treated as the ground

truth, this noise will likely impact subsequent analyses. Therefore,

researchers should ilter out noise in build outcome data before con-

ducting further analyses. Moreover, tool developers and researchers

who develop and propose solutions based on build outcome data

need to take the heterogeneity of builds into account.

In summary, this paper makes the following contributions:

• An empirical study of noise and heterogeneity of build break-

age in a large sample of Travis CI builds.

• A replication package containing Travis CI speciication

iles, metadata, build logs at the job level, and our data ex-

traction and analysis scripts.2

• A taxonomy of breakage types that builds upon prior work.

Paper organization. The remainder of the paper is organized as

follows: Section 2 describes the research methodology. Sections 3

and 4 present our indings related to noise in build outcome and

build heterogeneity, respectively. Section 5 discusses the broader

implications of our study for the research and tool building commu-

nities. Section 6 outlines the threats to validity. Section 7 surveys

related work. Finally, Section 8 concludes the paper.

2 STUDY DESIGN

In this section, we describe our rationale for selecting the corpus of

studied systems and our approach to analyze this large corpus of

build data, which follows Mockus’ four-step procedure [17] for min-

ing software data. Figure 1 provides an overview of our approach.

2https://github.com/software-rebels/bbchch

2.1 Corpus of Candidate Systems

We conduct this study by using openly available project metadata

and build results of GitHub projects that use the Travis CI service

to automate their builds. GitHub is the world’s largest hosting

service of open source software, with around 20million users and 57

million repositories, in 2017.3 A recent analysis shows that Travis

CI is the most popular CI service among projects on GitHub.4

2.2 Retrieve Raw Data

We begin by retrieving the TravisTorrent dataset [3], which con-

tains build outcome data from GitHub projects that use the Travis

CI service. As of our retrieval, the TravisTorrent dataset contains

data about 3,702,595 build jobs that belong to 680,209 builds span-

ning 1,283 GitHub projects. Those builds include one to 252 build

jobs (median of 3). In addition to build-related data, the Travis-

Torrent dataset contains details about the GitHub activity that

triggered each build. For example, every build includes a commit

hash (a reference to the build triggering activity in its Git reposi-

tory), the amount of churn in the revision, the number of modiied

iles, and the programming language of the project. TravisTorrent

also includes the number of executed and passed tests.

TravisTorrent alone does not satisfy all of the requirements of

our analysis. Since TravisTorrent infers the build job outcome by

parsing the raw log, it is unable to detect the outcome of 794,334

jobs (21.45%). Furthermore, TravisTorrent provides a single bro-

ken category, whereas Travis CI records build breakage in three

diferent categories (see Subsection 2.4).

To satisfy our additional data requirements, we complement

the TravisTorrent dataset by extracting additional data from the

REST API that is provided by Travis CI. From the API, we collect

the CI speciication (i.e., .travis.yml ile) used by Travis CI to

create each build job and the outcome of each build job. To enable

further analysis of build breakages, we also download the plain-text

logs of each build job in the TravisTorrent dataset.

2.3 Clean and Process Raw Data

Since we focus on build breakages, we ilter away projects that do

not have any broken builds. This excludes from our analysis toy

projects that have conigured CI initially but do not use CI services.

1,276 projects (out of 1,283) survive this ilter.

We observe that 996 build logs do not parse cleanly.When retriev-

ing these logs, the Travis CI API returned a truncated or invalid

response. We also ilter these logs out of our analysis; however, we

do note that these 996 logs account for a negligible proportion of

the sample of analyzed build logs (996/3,702,595 = 0.03%).

2.4 Construct Meaningful Metrics

In this subsection, we irst deine the Travis CI concepts that are

useful for understanding our work. Then, we deine the metrics

that we use to operationalize the study dimensions.

Core Concepts in Travis CI. In this paper, we adhere to the

terminology as deined in the oicial Travis CI documentation.5

3https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-
anniversary-sale
4https://github.com/blog/2463-github-welcomes-all-ci-tools
5https://docs.travis-ci.com/user/for-beginners/

https://github.com/software-rebels/bbchch
https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale
https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale
https://github.com/blog/2463-github-welcomes-all-ci-tools
https://docs.travis-ci.com/user/for-beginners/

Noise and Heterogeneity in Historical Build Data ASE ’18, September 3–7, 2018, Montpellier, France

(4)
Analyze and

Present
Results

(1)
Retrieve
Raw Data

Downloaded
Project Data

Computed
Metrics

(3)
Construct

Meaningful Metrics

(2)
Clean and

Process Raw
Data

Processed
Project Data

Selected
Metadata

TravisTorrent

Travis CI API

Analyze
Build Noise

Analyze
Build

Equality

Retrieve
Metadata

Raw Logs

Build Equality
Metrics

Build Noise
Metrics

Filter
Malformed

Logs

Filter
Inactive
Projects

Selected Logs

Compute
Build Equality

Metrics

Compute
Build Noise

Metrics

Compute
Build Noise

Metrics

Retrieve
Build
Logs

Candidate
Metadata

Figure 1: An overview of the approach we followed for data analysis.

A job is an automated process that clones a particular revision

of a Git repository into a (virtual) environment and then carries out

a series of tasks, such as compiling the code and executing tests.

Each job is comprised of three main phases: install, script, and

deploy. Each phase may be preceded by a before sub-phase or fol-

lowed by an after sub-phase. These sub-phases are often used to

ensure that all of the pre-conditions are satisied before the main

phase is executed (before install, before script, before deploy), and

all of the post-conditions are met after executing the main phase

commands (after success, after failure, after deploy).

A build is comprised of jobs. For example, a build can have

multiple jobs, each of which tests the project with a diferent variant

of the development or runtime environment. Once all of the jobs

in the build are inished, the build is also inished.

For each job, Travis CI reports one of four outcomes:

• Passed. The project was built successfully and passed all

tests. All phases terminate with an exit code of zero.

• Errored. If any of the commands that are speciied in the

before_install, install, or before_script phases of the build

lifecycle terminate with a non-zero exit code, the build is

labelled as errored and stops immediately.

• Failed. If a command in the script phase terminates with a

non-zero exit code, the build is labelled as failed, but execu-

tion continues with the after_failure phase.

• Cancelled. A Travis CI user with suicient permissions

can abort the build using the web interface or the API. Such

builds are labelled as cancelled.

Projects that use the Travis CI service inform Travis CI about

how build jobs are to be executed using a .travis.yml conigura-

tion ile. The properties that are set in this coniguration ile specify

which revisions will initiate builds, how the build environments

are to be conigured for executing builds, and how diferent teams

or team members should be notiied about the outcome of the build.

Furthermore, the coniguration ile speciies which tools are re-

quired during the build process and the order in which these tools

need to be executed.

Metrics. Based on the above concepts, we deine seven metrics

to analyze build breakage. These metrics are not intended to be

complete, but instead provide a starting point for inspecting build

breakage for suspicious entries that future work can build upon.

Our initial set of metrics belong to two dimensions.

• Build noise metrics. In this dimension, we compute the

rate at which build breakage is actively ignored and passively

ignored. In addition, we measure the staleness of each broken

build, i.e., the rate at which breakages are recurring. Finally,

we compute the Signal-To-Noise Ratio (SNR) to measure the

proportion of noise in build outcome data caused by passively

and actively ignored build breakage.

• Build heterogeneity metrics. In this dimension, for each

broken build, we compute the matrix breakage purity and

classify broken builds by the root cause. For practical reasons,

we extract root causes for build breakage from the 67,267 jobs

that use the Maven build tool. This allows us to build upon

the Maven Log Analyzer [15], which can classify ive types

and 24 subtypes of Maven build breakage. Finally, we classify

each of the version control revisions that are associated

with each build, according to contributor type (i.e., core or

peripheral contributors).

2.5 Analyze and Present Results

Using the metrics that we deine in Section 3.4, we (1) plot their

values using bar charts, line graphs, scatterplots, and bean plots [10];

and (2) conduct statistical analyses using Spearman’s ρ, Wilcoxon

signed rank tests, and Clif’s δ .

3 NOISE IN BUILD BREAKAGE DATA

The inal build outcome does not always tell the complete story.

Indeed, a broken build outcome may not indicate a problem with

the system, but rather a problem with the build system or test suite.

Conversely, a passing build outcome may only be labeled as such

because breakages in particular jobs are being ignored.

In this section, we present the results of our noisiness study in

terms of outcomes of builds that are actively ignored (3.1), passively

ignored (3.2), or stale (3.3). We also provide an overview of the

signal-to-noise ratio in the studied corpus (3.4).

3.1 Actively Ignored by Developers

Motivation. Support for new runtime environments is often slowly

rolled out through adaptive maintenance [20]. While support for

new platforms are in the experimental stage, developers may ignore

build breakage on these platforms.

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

To prevent failing jobs in experimental areas of the codebase from

causing build breakage, Travis CI users can set the allow_failure

property when testing against versions or conigurations that devel-

opers are not ready to oicially support.6 In other words, a job may

fail; however, because the developers chose to ignore the outcome

of its coniguration, the outcome of the build is passing. So if analy-

ses assume the build is successful because the reported outcome is

passing, actively ignored breakages may introduce noise. Therefore,

we analyze how often breakages are actively ignored in our corpus.

Approach. We begin by selecting all of the 496,240 passing builds

in our dataset. From those builds, we select the oneswith failing jobs.

Then, we retrieve the corresponding version of the .travis.yml

for each of those selected builds and check if the allow_failure

property is enabled for the failing jobs.

Results. In addition to computing how often passing builds contain

failing jobs, Figure 2 shows how the percentage of actively ignored

failing jobs is distributed in passing builds that had at least one

ignored failed job.

Observation 1: 12% of passing builds have an actively ignored

failure. Of the 496,240 passing builds in our corpus, 59,904 builds

had at least one actively ignored failure. Moreover, Figure 2 shows

that in the passing builds that had at least one actively ignored

failing job, the median percentage of ignored failing jobs is 25%.

In an extreme case, 87% of the jobs were actively ignored. We

observe this in the rubycas/rubycas-client7 project where the allow-

_failure property is set in 33 out of the 38 jobs.8 Upon closer

inspection, we observe that this is an example of the intended use

of the allow_failure property. This build speciies eleven Ruby

versions as runtimes and four Gemiles for dependency manage-

ment. Six of the combinations are explicitly excluded. Thus, 38 jobs

are created for each build (11 × 4 − 6). All of the 33 jobs that have

the allow_failure property set fail. In subsequent builds, after

several source code changes by the development team, all of these

failing jobs begin to pass. Finally, the development team removes

the allow_failure property from these jobs with an accompany-

ing commit message that states that łbuilds should fail on released

versions of ruby and railsž. The development team only ignored

failures while they improved their support for multiple ruby and

rails versions.

On the other hand, the allow_failure setting can be misused.

For example, in the zdavatz/spreadsheet9 project, the allow_failure

property, which is set in the initial build speciication of the project,

is never removed from the build speciication throughout the ive-

year history of the project.10 Furthermore, in our corpus, we detect

23 projects that had the allow_failure property set in all of their

builds. These projects were not short-lived, with 31 to 769 builds

in each project (median of 151). This suggests that although the

intended purpose of the allow_failure property is to temporar-

ily hide breakages, development teams do not always disable this

property after it has been set, leaving the breakages hidden.

6https://docs.travis-ci.com/user/customizing-the-build/#Rows-that-are-Allowed-to-
Fail
7https://github.com/rubycas/rubycas-client
8https://travis-ci.org/rubycas/rubycas-client/builds/5604025
9https://github.com/zdavatz/spreadsheet
10https://github.com/zdavatz/spreadsheet/blame/master/.travis.yml

0

5000

10000

15000

20000

0 10 20 30 40 50 60 70 80 90

Percentage of Ignored Failed Jobs

F
re

q
u

e
n

c
y

Figure 2: Percentage of ignored failed jobs in passing builds

that had at least one ignored failed job across all projects. Up

to 87% of the jobs are actively ignored.

Passing build outcomes do not always indicate that the build

was entirely clean.

3.2 Passively Ignored by Developers

Motivation. Build breakage is considered to be distracting because

it draws developer attention away from their work to ix build-

reported issues [11, 13, 19]. If development can proceed without

addressing a build breakage, we suspect that the breakage is not

distracting. Since these passively ignored breakages may introduce

noise in analyses that assume that all breakages are distracting. We

set out to analyze how often breakages are passively ignored.

Approach. To detect passively ignored breakages, we construct

and analyze the directed graph of revisions from the version history

that have been built using Travis CI.

(1) Build Filtering. We start by selecting the git_trigger-

_commit and the git_prev_built_commit ields of each

build from TravisTorrent. The git_trigger_commit ield

refers to the revision within the repository that is being built.

The git_prev_built_commit ield refers to the revision

that was the target of the immediately preceding build. Multi-

ple builds may be associated with one git_trigger_commit

because developers can conigure Travis CI to run builds

at scheduled time intervals, even if no new commits have

appeared in the repository.11 Builds can also be triggered by

the Travis CI API, regardless of whether there are new com-

mits in the repository.12 We remove such duplicate builds

by checking for builds that have event_type property set

to cron or api. This reduces the number of builds from

680,209 to 676,408. Travis CI also triggers builds when Git

tags are created even if the tagged commit has already been

built. We remove builds that were triggered by tag pushes

by checking for non-null values for the tags property. This

reduces the number of builds to 659,048. However, there are

11https://docs.travis-ci.com/user/cron-jobs/
12https://docs.travis-ci.com/user/triggering-builds/

https://docs.travis-ci.com/user/customizing-the-build/#Rows-that-are-Allowed-to-Fail
https://docs.travis-ci.com/user/customizing-the-build/#Rows-that-are-Allowed-to-Fail
https://github.com/rubycas/rubycas-client
https://travis-ci.org/rubycas/rubycas-client/builds/5604025
https://github.com/zdavatz/spreadsheet
https://github.com/zdavatz/spreadsheet/blame/master/.travis.yml
https://docs.travis-ci.com/user/cron-jobs/
https://docs.travis-ci.com/user/triggering-builds/

Noise and Heterogeneity in Historical Build Data ASE ’18, September 3–7, 2018, Montpellier, France

multiple builds remaining for one git_trigger_commit be-

cause manual build invocations can be made via the Travis

CI web interface. These manual invocations cannot be dis-

tinguished from regular builds that were triggered by Git

pushes. Therefore, when multiple builds are encountered

for one git_trigger_commit, the earliest build is selected.

This reduces the number of builds to 610,550.

(2) Graph Construction. Nodes in the graph represent build-

triggering commits, while edges connect builds chronolog-

ically. All nodes are connected by edges from git_prev-

_built_commit node to git_trigger_commit node.

(3) Graph Analysis. We use the directed graph to identify

build-triggering commits from which others branch. We se-

lect those branch point build-triggering commits that have a

non-passing outcome. Then, we traverse all of the branches

of such builds in a breadth-irst manner to ind the earli-

est build where the outcome is passing. Finally, we count

the number of builds along the shortest path between the

breakage branch point and the earliest ix.

Results. Figure 3 shows the broken builds that are at the branch

points in the version history of the project. To some degree, devel-

opers passively ignored these failures by not immediately ixing

them and continuing development in multiple paths.

Observation 2: Breakages often persist after branching. Of the

23,068 builds that are triggered by commits at branch points, 4,136

(18%) are broken. Of those commits that are branched when the

build was broken, 3,426 builds (83%) are not ixed in the immedi-

ately subsequent build. These breakages are suspicious because

developers have not immediately ixed these breakages and have

continued development.

Figure 3 shows that commits are branched from up to twelve

times when the build was broken. In the 13,102 builds that were

not immediately ixed, several commits appear before the ix does.

Figure 4 shows the maximum and median durations where the

projects remained broken in the studied projects.

Observation 3: Breakages persist for up to 423 days, and seven

days on average, before being ixed. In one extreme case, the orbeon-

/orbeon-forms project13 had 485 consecutive build breakages over

423 days before inally the breakage was addressed. Upon further

investigation of this breakage, we ind that the build is broken due to

multiple test failures over time. By analyzing the commit messages

of the broken builds in this sequence, we ind only 10% of these

commits mention ixing the broken build (# of Occurrence of each

term: build=3, regression=2, test=46). However, near the end of the

long build breakage sequence, two commits before the build started

passing again, the developer has started skipping tests mentioning

łFor now, don’t run integration and database testsž.14 This shows

that the build breakages were not the focus of the development

activity until the end of the sequence when they turned of the tests

that were causing the breakage.

We ind that 761 projects have breakages that persist for more

than one day, 547 projects have breakages that persist for more than

one week, and 227 projects have breakages that persist for more

13https://github.com/orbeon/orbeon-forms
14https://github.com/orbeon/orbeon-forms/compare/f137cfb555f1...eb1a8095a025

0%

5%

10%

15%

20%

2 3 4 5 6 7 8 9 10 11 12

of Branches

P
e

rc
e

n
ta

g
e

 o
f

B
u

ild
s

Type of Builds: Failed After Branching Failed

Figure 3: Developers branch out into multiple development

paths (branches) even after build breakages. Percentage of

broken builds at branch points are shown in white. Per-

centage of broken builds that continued to be broken after

branching are shown in grey. There are no broken builds

with 11 branches.

1 Hour 1 Day 1 Week 1 Month 1 Year

Broken Time (in log scale)

P
ro

je
c
t

max

median

Figure 4: In some cases, builds can remain broken for 423

days. The graph shows themaximum andmedian durations

that each project’s build remained broken, ordered by the

maximum duration.

than one month before getting ixed. In eight projects, consecutive

build breakages persist for more than one year before getting ixed.

The overall median length of the failure sequences is ive, while

project-speciic medians range between 2ś29.

In 83% of branches from broken builds, the breakage persists.

These breakages persist for up to 485 commits.

3.3 Staleness of Breakage

Motivation. Developers can passively ignore breakages for difer-

ent reasons. We identify the staleness of a build breakage (whether

the project has encountered a given breakage in the past) as one of

the reasons for ignoring a build breakage. A new breakage is dif-

ferent from a stale breakage because developers may have become

desensitized to stale breakages.

https://github.com/orbeon/orbeon-forms
https://github.com/orbeon/orbeon-forms/compare/f137cfb555f1...eb1a8095a025

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

0%

25%

50%

75%

100%

Project

S
ta

le
 B

re
a

k
a

g
e

s
 P

e
rc

e
n

ta
g

e

Figure 5: Percentage of stale breakages in each project can

range from 7% to 96%.

Approach. In this section, we investigate how many times devel-

opers come across the same breakage repeatedly in the history of

a project with respect to the length of build breakage sequences.

These stale breakages can occur either consecutively or intermit-

tently. Hence, we extend the Maven Log Analyzer developed by

Macho et al. [15]. We use it to compare two Travis CI build jobs

and check the similarity of the breakages. To make the comparison

eicient, this is done in two steps. First, the logs of build jobs are

parsed and checked if they are breaking due to the same reason

(e.g., compilation failure, test execution failure, dependency reso-

lution failure). If the reason for failures are equal then the details

of the failure are also checked (e.g., if both breakages are due to

compilation failure, check if the compilation error is the same).

Results. Figure 5 shows the percentage of stale build breakages in

each project in descending order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that

we analyze are stale breakages. On the project level, staleness of

breakages ranges from 7% to 96% with a median of 50%. In the

eirslett/frontend-maven-plugin15 project, where we observe the max-

imum percentage of stale breakages (96%), it was due to the same

dependency resolution failure recurring in 23 builds.

Two of every three build breakages (67%) that we analyze

are stale.

3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we ind that build breakages that

are ignored by developers and build successes that include ignored

breakages can introduce noise in build outcome data. However, the

overall rate of noise in build outcome data is not yet clear. Such an

overview is useful for researchers who use build outcome data in

their work, to better understand the degree to which noise may be

impacting their analyses.

Approach. To quantify the proportion of noise in build outcome

data caused by passively and actively ignored build breakage, we

15https://github.com/eirslett/frontend-maven-plugin

5

6

7

8

9

10

0 100 200 300 400 500

Build Failure Sequence Length Threshold (tc)

S
ig

n
a

l−
to

−
N

o
is

e
 R

a
ti
o

Parameter

Overall

Branches−only

Figure 6: For every 11 builds there is at least one build

with an incorrect status. The Signal-To-Noise ratio increases

when a higher build breakage sequence length is chosen.

adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses
#FalseBuildBreakages + #FalseBuildSuccesses

(1)

where #TrueBuildBreakages (i.e., signal) is the number of broken

builds that are not ignored by developers, #TrueBuildSuccesses (i.e.,

signal) is the number of passing builds without ignored breakages,

#FalseBuildBreakages (i.e., noise) is the number of broken builds

that are ignored by developers, and #FalseBuildSuccesses (i.e., noise)

is the number of passing builds with ignored breakages.

To compute #FalseBuildBreakages, a threshold tc must be selected

such that if the number of consecutive broken builds is above tc ,

all builds in such sequences are considered false build breakages.

Instead of picking any particular tc value, we plot an SNR curve as

the threshold (tc) is changed.

Results. Figure 6 shows the SNR curve for the subject systems.

Observation 5: As tc decreases from 485 to 1, the SNR decreases

from 10.62 to 6.39. Since #FalseBuildSuccesses is not impacted by tc ,

the maximum SNR is observed when #FalseBuildBreakages is zero

(i.e., when tc is set to the maximum value). The minimum of SNR

is observed when tc is one and therefore all broken builds that are

not immediately ixed are considered false build breakages. If false

breakages are deined to be only in consecutive breakages with

branches in them, the Signal-to-Noise ratio ranges from 10.19 to

10.62.

One in every 7 to 11 builds (9%ś14%) is incorrectly labelled.

This noise may inluence analyses based on build outcome

data.

4 HETEROGENEITY IN BUILD BREAKAGE
DATA

The way in which builds are conigured and triggered vary from

project to project. This heterogeneity should be taken into con-

sideration when designing studies of build breakage. Below, we

demonstrate build heterogeneity using three criteria.

https://github.com/eirslett/frontend-maven-plugin

Noise and Heterogeneity in Historical Build Data ASE ’18, September 3–7, 2018, Montpellier, France

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●●

●
●

●●●

●●

●

●

●

●
●

●
●●●●●

●●
●
●

●

●

●●

●

●

●
●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●● ●●●●●●●●

0%

25%

50%

75%

100%

1 10 100

of jobs in build

Im
p

u
re

 B
re

a
k
a

g
e

s
 P

e
rc

e
n

ta
g

e

Figure 7: Percentage of impure build breakages increases

with the number of jobs in each build.

4.1 Matrix Breakage Purity

Motivation. If a software project needs to be tested in multiple en-

vironments with diferent runtime versions, CI services like Travis

CI provide the ability to declare these options in a matrix of runtime,

environment, and exclusions/inclusions sections. A build will execute

jobs for each combination of included runtimes and environments.

If a build is broken only within a subset of its jobs, the break-

age may be platform- or runtime-speciic. These environment-

speciic build breakages may need to be handled diferently from

the environment-agnostic breakages. Thus, we want to know the

extent to which real breakages are environment speciic.

Approach. To study the environments that are afected by a build

breakage, we deine Matrix Breakage Purity as follows:

Matrix Breakage Purity =
#FailedJobsInBuild

#AllJobsInBuild
(2)

A Matrix Breakage Purity below one indicates that the jobs that

were run in some environments passed. We compute the Matrix

Breakage Purity for all builds in our dataset and count the number

of builds with values below one. We label all builds that have a

Matrix Breakage Purity below one as impure build breakages.

Results. Figure 7 shows how the percentage of impure build break-

ages varies with respect to the number of jobs per build.

Observation 6: At least 44% of broken builds contain passing jobs.

Indeed, environment-speciic breakages are almost as common as

environment-agnostic breakages.

Given the diference in semantics between pure and impure build

breakage, researchers should take this into account when selecting

build outcome data for research. For example, in build outcome

prediction, if prediction models are trained using data that treats

environment-speciic and environment-agnostic breakages iden-

tically, the model itness will likely sufer. Moreover, the insights

that are derived from the models will likely be misleading, since the

two conlated phenomena will be modelled as one phenomenon.

Observation 7: Builds with a greater number of jobs are more

likely to sufer from impure build breakages. Figure 7 shows that the

number of jobs in a build and the percentage of broken builds that

have passing jobs are highly correlated. A Spearman correlation test

yields a ρ of 0.8, with p = 2.2 < 10−16. While pure build breakage

is common in builds with few jobs, when the number of jobs per

build exceeds three, impure build breakage are more frequent than

pure ones (i.e., impure breakage percentage > 50%).

Environment-speciic breakage is commonplace. Once the

number of jobs exceeds three, impure breakages occur more

frequently than pure breakages.

4.2 Reason for Breakage

Motivation. Builds can break for reasons that range from style

violations to test failures. Diferent types of failures have diferent

implications. For example, while a style violation might be cor-

rected easily, ixing a test failure might require time and efort to

understand and address. Since subsequent analyses of build data

should handle diferent types of breakages in diferent ways, we

want to know how types of build breakage vary in reality.

Approach. To analyze the reasons for build breakage in our corpus,

we extend the Maven Log Analyzer (MLA) [15]. Our extension irst

parses the Travis CI log ile and extracts the sections of the log

that correspond to executions of the Maven build tool. Then, each

of these Maven executions are fed to MLA to automatically classify

the status of each execution. In addition to the breakage types that

were identiied in the original work [15], our extended version of

MLA also detects the build breakage types that were reported by

Vassallo et al. [26] and Rausch et al. [18], as well as ten previously

unreported breakage categories.

If MLA classiies all Maven executions within a broken build

as successful, the build is labelled as a Non-Maven breakage. Non-

Maven breakages are further classiied as Pre-Maven if a failing

command is detected in the Travis CI log before the Maven com-

mands and Post-Maven otherwise.

In total, using our extendedMLA, we classify 67,267 broken build

jobs of projects that use Maven as the build tool.

Results. Table 1 classiies the broken Maven builds by reason.16

Observation 8: Although a large proportion of build breakages

are due to the execution of Ant from within Maven, most of these

breakages belong to one project. Table 1 shows that there are 15,850

instances of breakage where the external goal of executing an Ant

build from within a Maven build failed. This accounts for 92.59%

of the goal failed breakages in our corpus. However, this is an

example of an anomaly that dissipates when examined more closely.

Indeed, we ind that all of these breakages occur in only two of the

studied projects, the overwhelmingmajority (15,857) of which occur

in the jruby/jruby17 project. According to developer discussions,

Ant is used inside the Maven build of jruby/jruby for executing

tests.18 However, this complex build setup, which requires 250MB

of dependencies, causes build to fail intermittently. The developers

hope that the breakages will not occur once the build is completely

migrated to Maven.

Observation 9: In our corpus, most breakage is due to commands

other than main build tool,Maven.We observe 41% (27,289) jobs are

16More details about reasons for breakage are available online: https://github.com/
software-rebels/bbchch/wiki/Build-Breakages-in-Maven
17https://github.com/jruby/jruby
18https://gitter.im/jruby/jruby/archives/2016/05/27

https://github.com/software-rebels/bbchch/wiki/Build-Breakages-in-Maven
https://github.com/software-rebels/bbchch/wiki/Build-Breakages-in-Maven
https://github.com/jruby/jruby
https://gitter.im/jruby/jruby/archives/2016/05/27

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

Table 1: Distribution of Build Breakages in Maven Projects

based on the Categories proposed by Vassallo et al. [26]. and

Rausch et al. [18]. Global percentage of each category is

shown in brackets.

Category Subcategory # % Projects

Dependency Resolution* 2,257 (3.41%) 18

Test Execution Failed Unit 10,759 62.87% 165

Integration 6,354 37.13% 18

Total 17,113 (25.89%) 171

Compilation Failed Production 2,015 87.08% 18

Test 248 10.72% 12

Total 2,314 (3.50%) 47

Goal Failed Pre-processing 44 0.26% 4

Static-Analysis 210 1.23% 10

Dynamic-Analysis 8 0.05% 3

Validation 33 0.19% 5

Packaging 25 0.15% 4

Documentation 25 0.15% 7

Release Preparation 1 0.01% 1

Deployment - Remote 120 0.70% 9

Deployment - Local 7 0.04% 1

Support 3 0.02% 1

Ant inside Maven* 15,850 92.59% 2

Run system/Java program* 70 0.41% 2

Run Jetty server* 8 0.05% 1

Manage Ruby Gems* 65 0.38% 1

Polyglot for Maven* 32 0.19% 1

Total 17,119 (25.90%) 47

Broken Outside Maven No Log available* 1,554 5.69% 28

Failed Before Maven* 808 2.96% 3

Failed After Maven* 7,151 26.20% 46

Travis Aborted* 16,141 59.15% 172

Travis Cancelled* 1,635 5.99% 20

Total 27,289 (41.29%) 175

* New build breakage categories that did not appear in prior work.

broken due to reasons other than Maven executions failing. This

can be either due to a command that was executed by Travis CI

(outside of Maven) returning an error, the user canceling the build,

or Travis CI runtime aborting the build because it exceeded the

allocated time.

Observation 10: Only a small amount of breakage can be auto-

matically ixed by focusing on tool-speciic breakage. For example,

2,257 build jobs are broken because dependency resolution has

failed. This suggests that recent approaches that automatically ix

dependency-related build breakage [15] will only scratch the sur-

face of the build breakage problem. Moreover, Compilation and Test

Execution failures only account for another 29.39% of the breakage

in our corpus. Future automatic breakage recovery eforts should

look beyond tool-speciic breakages to the CI scripts themselves in

order to yield the most beneit for development teams.

41% of the broken builds in our corpus failed due to problems

outside of the execution of the main build tool. Since tool-

speciic breakage is rare, future automatic breakage recovery

techniques should tackle issues in the CI scripts themselves.

4.3 Type of contributor

Motivation. Both core and peripheral contributors trigger builds.

Since core contributors likely have a deeper understanding of the

project than peripheral contributors, builds that are triggered by

core contributors might have breakage rates and team responses

0
2
0

4
0

6
0

8
0

1
0
0

Broken Passed

Core contributor

Peripheral contributor

Figure 8: Percentage of broken and passing builds classiied

by contributor type. Horizontal black lines show themedian

values.

that difer from those of peripheral contributors. We set out to

investigate the diferences of build outcome, in these two categories

of contributors.

Approach. For analyzing this dimension, we use the two main

outcomes of each build (passed or failed) and whether the builds

were triggered by a commit that was authored by a core team

member. We use the core member indicator from the TravisTor-

rent dataset,19 which is set for contributors who have commit-

ted at least once within the three months prior to this commit

(gh_by_core_team_member). Then, we use the broken time and

the length of broken build sequences to investigate the relationship

between the contributor type and build breakage.

Results. Figure 8 shows how the percentage of build outcomes are

distributed across projects classiied by contributor type.

Observation 11: Builds triggered by core team members are break

signiicantly more often than those of peripheral contributors. A

Wilcoxon signed rank test indicates that breakage rates in core

contributors are higher than those of peripheral contributors (p =

1.28 < 10−8); however, the efect size is negligible (Clif’s δ = 0.13).

Due to having more experience, core team members in the devel-

opment teams are assigned to complex tasks, which may explain

why breakage rates tend to be a little higher. The Wilcoxon test is

inconclusive when comparing rates of passing builds among core

and peripheral contributors.

Figure 9 shows how long build breakages persist classiied by

contributor type. Figures 9a and 9b show the length of build break-

age sequences in terms of commits and time, respectively.

Observation 12: Breakages that are caused by core contribu-

tors tend to be ixed sooner than those of peripheral contributors. A

Wilcoxon signed rank test indicates that breakages caused by core

contributors tend to persist for signiicantly less time than those of

peripheral contributors (p = 1.86 < 10−7); however, the efect size is

negligible (Clif’s δ = 0.09). Another Wilcoxon signed rank test in-

dicates that breakages of core contributors persist for fewer consec-

utive builds than those of peripheral contributors (p = 1.81 < 10−8);

however, the efect size is also negligible (Clif’s δ = 0.09).

19https://travistorrent.testroots.org/page_dataformat/

https://travistorrent.testroots.org/page_dataformat/

Noise and Heterogeneity in Historical Build Data ASE ’18, September 3–7, 2018, Montpellier, France
2

5
1
0

2
0

5
0

2
0
0

5
0
0

Broken Sequence Length

Peripheral contributor

Core contributor

(a) Chains of consecutive

breakages caused by periph-

eral contributors tend to be

longer.

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

Broken Time (in hours)

Peripheral contributor

Core contributor

(b) Build breakages caused by

peripheral contributors take

more time to repair.

Figure 9: Build breakages caused by peripheral contributors

remain broken signiicantly longer than those of core con-

tributors. Horizontal black lines show the median values.

The longer time taken by peripheral contributors might be due

to multiple attempts of trial and error before ixing a breakage,

while core members might be able to identify the root cause of

the breakage sooner. Therefore, it may be worthwhile for the re-

searchers working on automatic build breakage repair to focus on

build breakages that are caused by peripheral contributors.

Broken builds that are caused by core contributors tend to be

ixed sooner than those of peripheral contributors.

5 IMPLICATIONS

We now present the broader implications of our observations for

researchers and tool builders.

5.1 Research Community

Build outcomenoise should beiltered out before subsequent

analyses. Passing builds might contain breakages that are ignored.

Long sequences of repeated breakages might be ignored by the

developers as false breakages. If the noise due to false successes

and false breakages is not iltered out, the results from prediction

models may lead to spurious or incorrect conclusions.

Heterogeneity of builds should be considered when training

build outcome prediction models. Some breakages are limited

to speciic environments while others are not. The reason for break-

ages vary from trivial issues like style violations to complex test

failures. Breakages are often not caused by development mistakes,

but by resource limitations in the CI environment. Indeed, build

outcome includes many complex categories that can not be accu-

rately represented in the prediction models using only a łbrokenž

or łcleanž label.

5.2 Tool Builders

Automatic breakage recovery should look beyond tool-speciic

insight.While recently proposed tools can automatically recover

from tool-speciic build breakage [15], we ind that this category

only accounts for a small proportion of CI build breakage in our

corpus. Future eforts in breakage recovery should consider CI-

speciic scripts, for example, detecting those scripts that are at risk

of exceeding the allocated time prior to execution.

Richer information should be included in build outcome re-

ports and dashboards. Currently, build tools and CI services pro-

vide users with dashboards that show passing builds in green and

broken builds in red. However, we found hidden breakages among

passing builds and non-distracting breakages among broken builds.

Moreover, heterogeneity of breakages introduce further complexi-

ties. Build outcome reporting tools and dashboards should consider

providing more rich information about hidden, non-distracting, and

stale breakages, as well as breakage purity and type.

6 THREATS TO VALIDITY

Construct Validity. Threats to construct validity refer to the rela-

tionship between theory and observation. It is possible that there

are build failure categories that our scripts are unable to detect. By

implementing the categories that were reported in prior work [15,

18, 26] and then manually checking a subset of logs along with their

detected failure categories, we ensure most of the maven plug-ins

and their failure categories are covered by our scripts.

There are likely to be other factors that introduce noise and

variability in build outcomes. As an initial study, we focus on the

aspects that we think demonstrate noise and heterogeneity of builds

in this work. Our list of aspects is not intended to be exhaustive.

Internal Validity. Threats to internal validity are related to factors,

internal to our study, that can inluence our conclusions. In the

analysis of passively ignored breakages, we associate continuous

breakage of a build with developers ignoring the breakage. However,

developers may be unsuccessfully attempting to ix these breakages

during the breakage chain. We do not suspect that this is the most

frequent explanation because we ind several cases where the initial

breakage has several branches (implying that several developers

inherited the breakage). Although it can be assumed that these

branches are created to ix the build, it is unlikely that twelve

branches are created only for bug ixing. We further investigate the

staleness of breakages, observing that the same build breakages are

often repeated in these long chains.

External Validity. Threats to external validity are concerned with

the generalizability of our indings. We only consider open source

projects that use the Travis CI service and are hosted on GitHub.

However, because GitHub is one of the most popular hosting plat-

forms for open source software projects and Travis CI is the most

widely adopted CI service among open source projects, our indings

are applicable to a large number of open source projects. Similar

to that, we only consider projects that use Maven for analyzing

reasons for build breakage. However, Maven is one of the most

popular build tools for Java projects [16] and therefore our indings

are widely applicable. Nonetheless, replication studies using data

from other hosting platforms, other CI services, and other build

tools may provide additional insight.

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

7 RELATED WORK

In this section, we describe the related work with respect to build

breakage and continuous integration.

7.1 Build Breakage

Build breakage has attracted the attention of software engineering

researchers at many occasions during the past decade.

The rate at which builds are broken has been explored in the

past. Kerzazi et al. [11] have conducted an empirical study in a

large software company analyzing 3,214 builds that were executed

over a period of six months to measure the impact of build break-

ages, observing a build breakage rate of 17.9%, which generates

an estimated cost of 904.64 to 2034.92 person hours. Seo et al. [19]

studied nine months of build data at Google, inding that 29.7%

and 37.4% of Java and C++ builds were broken. Tufano et al. [21]

found only 38% of the change history of 100 subject systems is

successfully compilable and that broken snapshots occur in 96% of

the studied projects. Hassan et al. [7] showed that at least 57% of

the broken builds from the top-200 Java projects on GitHub can

be automatically resolved.

To better understand and predict build breakage, past studies

have it prediction models. Hassan and Zhang [6] have demon-

strated that decision trees based on project attributes can be used

to predict the certiication result of a build. Wolf et al. [27] used a

predictive model that leverages measures of developer communica-

tion networks to predict build breakage. Similarly, Kwan et al. [12]

used measures of socio-technical congruence, i.e., the agreement of

the coordination needs established by the technical domain with

the actual coordination activities carried out by project members,

to predict build outcome in a globally distributed software team. In

recent work, Luo et al. [14] have used the TravisTorrent dataset

to predict the result of a build based on 27 features. They found

that the number of commits in a build is the most important factor

that can impact the build result. Dimitropoulos et al. [4] use the

same dataset to study the factors that have the largest impact on

build outcome based on K-means clustering and logistic regression.

For communicating the current status of the build, Downs et

al. [5] proposed the use of ambient awareness technologies. They

have observed by providing a separate, easily perceived commu-

nication channel distinct from standard team worklow for com-

municating build status information, the total number of builds

increased substantially, and the duration of broken builds decreased.

To help developers to debug build breakage, Vassallo et al. [25] pro-

pose a summarization technique to reduce the volume of build

logs. For mitigating the impact of build breakage in the context of

component-based software development, van der Storm [22] have

shown how backtracking can be used to ensure that a working

version is always available, even in the face of failure.

Broadly speaking, the prior work has treated build breakage as

a boolean, pass or fail label. In this paper, we advocate for a more

nuanced interpretation of build breakage that recognizes the noise

in build outcome data and heterogeneity of build executions.

7.2 Continuous Integration

Recent work has studied adoption of CI in the open source com-

munity. Beller et al. [3] have released a dataset based on Travis CI

and GitHub that provides easy access to hundreds of thousands

of CI builds from more than 1,000 open-source projects. Eforts

similar to this have made several studies of CI builds possible. By

analyzing open source projects on GitHub and surveying devel-

opers, Hilton et al. [9] report on which CI systems developers use,

how developers use CI, and reasons for using CI (or not).

The adoption of CI has an impact on other project characteristics.

Hilton et al. [8] found that, when using CI, developers have to

choose between speed and certainty, better access and information

security, and more coniguration options and greater ease of use.

Vasilescu et al. [24] observe that CI adoption is often accompanied

by a boost in the productivity of project teams.

Recent community interest in CI has yielded a resurgence of

build breakage research. For example, Vasilescu et al. [23] studied

223 GitHub projects and found that the CI builds started by pull

requests are more likely to fail than those started by direct commits.

Beller et al. [2] have studied testing practices in CI of Java and Ruby

projects, observing that testing is the most frequently occurring

type of build breakage. Rausch et al. [18] identiied the most com-

mon error categories in CI builds based on 14 open source Java appli-

cations. Zampetti et al. [28] have studied the usage of static analysis

tools in 20 open source Java projects that are hosted on GitHub

and using Travis CI. Vassallo et al. [26] compare the CI processes

and occurrences of build breakages in 349 open source Java projects

and 418 projects from a inancial organization. Labuschagne et

al. [13] have also observed that there are long stretches of broken

builds due to projects not coniguring Travis CI correctly or not

examining the Travis CI output. To account for this, they removed

the 20% of the projects that had the most and the fewest failures.

While prior work helps to understand build breakage and CI in

practice, we focus on the trustworthiness of of-the-shelf historical

CI build data. Our observations yield insights that can guide future

studies of and tool development for build breakage in the CI context

(see Section 5).

8 CONCLUSION

Automated builds are commonly used in software development to

verify functionality and detect defects early in software projects. An

of-the-shelf usage of build outcome data is implicitly susceptible to

harmful assumptions about build breakage. By empirically studying

build jobs of 1,276 open source projects, we investigate whether two

assumptions hold. First, that build results are not noisy; however,

we ind in every eleven builds, there is at least one build with a

misleading or incorrect outcome on average. Second, that builds

are homogeneous; however, we ind breakages vary with respect

to the number of impacted jobs and the causes of breakage.

Researchers who make use of build outcome data should make

sure that noise is iltered out and heterogeneity is accounted for

before subsequent analyses are conducted. Build reporting tools

and dashboards should also consider providing a richer interface

to better represent these characteristics of build outcome data.

In future work, we plan to study how much of an impact noise

and heterogeneity can have on common analyses of historical build

data. We also plan to investigate whether breakage type varies with

respect to contributor type and other commit factors.

Noise and Heterogeneity in Historical Build Data ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] Bram Adams and Shane McIntosh. 2016. Modern Release Engineering in a Nut-

shell: Why Researchers should Care. In Proceedings of the International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 5. 78ś90.

[2] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. In Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering (SANER). 470ś481.

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the International Conference on Mining Software Repositories
(MSR). 447ś450. https://doi.org/10.1109/msr.2017.24

[4] Panagiotis Dimitropoulos, Zeyar Aung, and Davor Svetinovic. 2017. Continuous
integration build breakage rationale: Travis data case study. In International
Conference on Infocom Technologies and Unmanned Systems (Trends and Future
Directions) (ICTUS). https://doi.org/10.1109/ictus.2017.8286087

[5] John Downs, Beryl Plimmer, and John G. Hosking. 2012. Ambient awareness
of build status in collocated software teams. In Proceedings of the International
Conference on Software Engineering (ICSE). https://doi.org/10.1109/icse.2012.
6227165

[6] Ahmed E. Hassan and Ken Zhang. 2006. Using Decision Trees to Predict the
Certiication Result of a Build. In Proceedings of the International Conference on
Automated Software Engineering (ASE). https://doi.org/10.1109/ase.2006.72

[7] Foyzul Hassan, Shaikh Mostafa, Edmund S.L. Lam, and Xiaoyin Wang. 2017. Au-
tomatic Building of Java Projects in Software Repositories: A Study on Feasibility
and Challenges. In Proceedings of the International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM). https://doi.org/10.1109/esem.2017.11

[8] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-ofs in continuous integration: assurance, security, and lexibility.
In Proceedings of Joint Meeting of the European Software Engineering Conference
and the International Symposium on the Foundations of Software Engineering
(ESEC/FSE). 197ś207. https://doi.org/10.1145/3106237.3106270

[9] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and beneits of continuous integration in open-source projects.
In Proceedings of the International Conference on Automated Software Engineering
(ASE). 426ś437. https://doi.org/10.1145/2970276.2970358

[10] Peter Kampstra. 2008. Beanplot: A Boxplot Alternative for Visual Comparison
of Distributions. Journal of Statistical Software 28, Code Snippet 1 (2008), 1ś9.
https://doi.org/10.18637/jss.v028.c01

[11] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why Do Automated
Builds Break? An Empirical Study. In Proceedings of the International Conference
on Software Maintenance and Evolution (ICSME). https://doi.org/10.1109/icsme.
2014.26

[12] Irwin Kwan, Adrian Schroter, and Daniela Damian. 2011. Does Socio-Technical
Congruence Have an Efect on Software Build Success? A Study of Coordination
in a Software Project. IEEE Transactions on Software Engineering (TSE) 37, 3
(2011), 307ś324. https://doi.org/10.1109/tse.2011.29

[13] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: a study of Java projects using continuous in-
tegration. In Proceedings of the Joint Meeting on Foundations of Software Engineer-
ing (ESEC/FSE). ACM Press, 821ś830. https://doi.org/10.1145/3106237.3106288

[14] Yang Luo, Yangyang Zhao, Wanwangying Ma, and Lin Chen. 2017. What are the
Factors Impacting Build Breakage?. In Proceedings of the Web Information Systems
and Applications Conference (WISA). IEEE. https://doi.org/10.1109/wisa.2017.17

[15] Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatically
Repairing Dependency-Related Build Breakage. In Proceedings of the International
Conference on Software Analysis, Evolution, and Reengineering (SANER). 106ś117.
https://doi.org/10.1109/SANER.2018.8330201

[16] Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and
Ahmed E. Hassan. 2015. A Large-Scale Empirical Study of the Relationship

between Build Technology and Build Maintenance. Empirical Software Engineer-
ing 20, 6 (2015), 1587ś1633.

[17] Audris Mockus. 2007. Software Support Tools and Experimental Work. In
Empirical Software Engineering Issues. Critical Assessment and Future Directions:
InternationalWorkshop, Dagstuhl Castle, Germany, June 26-30, 2006. Revised Papers,
Victor R. Basili, Dieter Rombach, Kurt Schneider, Barbara Kitchenham, Dietmar
Pfahl, and Richard W. Selby (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
91ś99. https://doi.org/10.1007/978-3-540-71301-2_25

[18] Thomas Rausch,Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017. An
Empirical Analysis of Build Failures in the Continuous Integration Worklows of
Java-Based Open-Source Software. In Proceedings of the International Conference
on Mining Software Repositories (MSR). 345ś355. https://doi.org/10.1109/msr.2017.
54

[19] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers' build errors: a case study (at google).
In Proceedings of the International Conference on Software Engineering (ICSE).
724ś734. https://doi.org/10.1145/2568225.2568255

[20] E. Burton Swanson. 1976. The Dimensions of Maintenance. In Proceedings of
International Conference on Software Engineering (ICSE). 492ś497. http://dl.acm.
org/citation.cfm?id=800253.807723

[21] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process (JSEP)
29, 4 (2016), e1838. https://doi.org/10.1002/smr.1838

[22] Tijs van der Storm. 2008. Backtracking Incremental Continuous Integration. In
Proceedings of the European Conference on SoftwareMaintenance and Reengineering
(CSMR). https://doi.org/10.1109/csmr.2008.4493318

[23] Bogdan Vasilescu, Stef van Schuylenburg, Jules Wulms, Alexander Serebrenik,
and Mark G. J. van den Brand. 2015. Continuous integration in a social-coding
world: Empirical evidence from GitHub. **Updated version with corrections**.
CoRR abs/1512.01862 (2015). arXiv:1512.01862 http://arxiv.org/abs/1512.01862

[24] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Inte-
gration in GitHub. In Proceedings of the Joint Meeting of the European Software
Engineering Conference and the International Symposium on the Foundations of
Software Engineering (ESEC/FSE). 805ś816.

[25] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. 2018.
Un-Break My Build: Assisting Developers with Build Repair Hints. In Proceedings
of the International Conference on Program Comprehension (ICPC). To appear.

[26] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A Tale of CI Build Failures: An Open Source and a Financial Organization Per-
spective. In Proceedings of the International Conference on Software Maintenance
and Evolution (ICSME). 183ś193. https://doi.org/10.1109/icsme.2017.67

[27] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. 2009. Predict-
ing build failures using social network analysis on developer communication.
In Proceedings of the International Conference on Software Engineering (ICSE).
https://doi.org/10.1109/icse.2009.5070503

[28] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and
Massimiliano Di Penta. 2017. How Open Source Projects Use Static Code
Analysis Tools in Continuous Integration Pipelines. In Proceedings of the In-
ternational Conference on Mining Software Repositories (MSR). 334ś344. https:
//doi.org/10.1109/msr.2017.2

[29] Mahdis Zolfagharinia, Bram Adams, and Yann-Gaël Guéhéneuc. 2017. Do Not
Trust Build Results at Face Value - An Empirical Study of 30 Million CPAN Builds.
In Proceedings of the International Conference on Mining Software Repositories
(MSR). 312ś322. https://doi.org/10.1109/msr.2017.7

https://doi.org/10.1109/msr.2017.24
https://doi.org/10.1109/ictus.2017.8286087
https://doi.org/10.1109/icse.2012.6227165
https://doi.org/10.1109/icse.2012.6227165
https://doi.org/10.1109/ase.2006.72
https://doi.org/10.1109/esem.2017.11
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.18637/jss.v028.c01
https://doi.org/10.1109/icsme.2014.26
https://doi.org/10.1109/icsme.2014.26
https://doi.org/10.1109/tse.2011.29
https://doi.org/10.1145/3106237.3106288
https://doi.org/10.1109/wisa.2017.17
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1007/978-3-540-71301-2_25
https://doi.org/10.1109/msr.2017.54
https://doi.org/10.1109/msr.2017.54
https://doi.org/10.1145/2568225.2568255
http://dl.acm.org/citation.cfm?id=800253.807723
http://dl.acm.org/citation.cfm?id=800253.807723
https://doi.org/10.1002/smr.1838
https://doi.org/10.1109/csmr.2008.4493318
http://arxiv.org/abs/1512.01862
http://arxiv.org/abs/1512.01862
https://doi.org/10.1109/icsme.2017.67
https://doi.org/10.1109/icse.2009.5070503
https://doi.org/10.1109/msr.2017.2
https://doi.org/10.1109/msr.2017.2
https://doi.org/10.1109/msr.2017.7

	Abstract
	1 Introduction
	2 Study Design
	2.1 Corpus of Candidate Systems
	2.2 Retrieve Raw Data
	2.3 Clean and Process Raw Data
	2.4 Construct Meaningful Metrics
	2.5 Analyze and Present Results

	3 Noise in Build Breakage Data
	3.1 Actively Ignored by Developers
	3.2 Passively Ignored by Developers
	3.3 Staleness of Breakage
	3.4 Signal-To-Noise Ratio

	4 Heterogeneity in Build Breakage Data
	4.1 Matrix Breakage Purity
	4.2 Reason for Breakage
	4.3 Type of contributor

	5 Implications
	5.1 Research Community
	5.2 Tool Builders

	6 Threats to Validity
	7 Related Work
	7.1 Build Breakage
	7.2 Continuous Integration

	8 Conclusion
	References

