
Preventing and Repairing Build Breakage
Christian Macho

Software Engineering Research Group
University of Klagenfurt

Klagenfurt, Austria
Email: christian.macho@aau.at

Abstract—Build systems play a crucial role in modern software
engineering. Recent studies have shown that many builds fail,
mostly due to neglected maintenance. This blocks teams from
continuing the development and costs time and resources to
fix. The target of the thesis is to reduce build breakage by
investigating changes that lead to failing builds, identifying bad
and best practices for build configuration, and providing an
approach to automatically repair broken builds. As a first step,
we conduct empirical studies to determine changes and change
patterns that lead to build breakage and reveal the reasons for
build breakage. Based on these findings, we develop an approach
to automatically refactor build configurations that are likely
to fail and an approach to repair broken builds. We plan to
evaluate our approaches first, quantitatively by measuring the
performance of our approaches in open source projects and
second, qualitatively by asking developers to use our approaches
and give feedback on their applicability and usefulness.

Keywords-build systems; maintenance; automated repair;

I. PROBLEM STATEMENT

Build systems are an essential component in modern soft-
ware engineering. They are used to automate tasks of the
software development lifecycle, such as compiling code, as-
sembling artifacts, generating documentation, testing artifacts,
and deploying artifacts. Although they play an important role
in software development, research has ignored this field for
a long time [17]. Recent research, such as [18], started to
investigate build systems as a component of the software
development lifecycle. Moreover, relations of the build system
to other components of the lifecycle as well as problems in
the usage and evolution of a build system have been revealed.

Kumpfert et al. observed that using a build system decreases
the workload of developers but its usage also adds additional
overhead for maintaining the build configuration [13]. Seo et
al. addressed this issue and found that neglected maintenance
of the build configuration is one of the most frequent reasons
for breaking a build [21]. Suffering from build breakage
blocks development teams from continuing their work and
consequently costs the companies money as Kerzazi et al. [12]
found. Moreover, Seo et al. and Kerzazi et al. investigated the
number of failing builds and showed that the ratio of build
breakage is high (28.5% and 17.7%, respectively).

The reasons for build breakage and solutions to avoid and
fix build breakage are still open issues. Hence, the objective
of the thesis is to understand build breakage and to reduce the
number of failing builds. First, we plan to investigate changes
to the build configuration to reveal the reasons of build

breakage. Second, we will build prediction models to explain
and predict build breakage. Finally, we will investigate an
approach that avoids build breakage and an approach that
fixes failing builds. Our research is based on the following
main hypothesis:

With a better understanding of how and why builds break,
we can improve the quality of build configurations to reduce
the number of failing builds.

We plan to address this main hypothesis by dividing
the work into three main research questions:
(RQ1) What are the reasons for and characteristics of build

breakage and fixes?
(RQ2) To what extent can we predict build breakage?
(RQ3) To what extent can we automatically refactor

breakage-prone build configurations and repair broken
builds?

II. RESEARCH APPROACH

We split each research question into several work packages
(WP). To answer our research questions, we will follow
the idea of design science research [11]. To that extent,
we will build prototypes and evaluate the approaches with
the prototypes. The evaluation will be twofold, following a
mixed methods approach [2]. First, we plan to use quantitative
methods, such as random forest, support vector machine, or
frequent item set mining, and second, qualitative methods,
such as card sorting, or surveys. We plan to use open source
Java projects to evaluate our prototypes because they provide
a large corpus of data and are freely available. We restrict
our studies to Apache Maven, a state of the art build system
that is widely used, and leave it to future work to study other
build systems. We plan to give our tools to developers to get
feedback on the applicability and usefulness of our tools. In
the following, we describe each research question in detail.

A. Reasons and Characteristics of Build Breakage (RQ1)

The first research question consists of three work packages
and focuses on the properties and characteristics of build
breakage. We plan to study why build breakage happens and
which changes or change patterns are often involved in build
breakage. To that extent, we will mine the version history of
selected projects to reveal the relation between changes and
build breakage.

Build Changes (WP1). The goal of this work package is to in-
vestigate which changes are applied to the build configuration
to understand its evolution. We plan to develop an approach
to extract fine-grained changes from build configurations in
analogy to ChangeDistiller for Java [6]. Prior studies using
ChangeDistiller showed that the fine-grained representation of
changes helped to improve studies e.g., on co-evolution [5]
or code change prediction [8]. However, we are the first to
extract build code changes from build configurations. We plan
to define a taxonomy of fine-grained build changes. We believe
that the fine-grained build changes will help to understand the
evolution of build configurations and furthermore, contribute
to the knowledge of understanding build breakage.

The evaluation of our approach will be twofold. First, we
will provide an extensive tests suite to show that our approach
can extract each change type properly. These tests will be
created with artificially constructed data to ensure that no
side effects bias our extraction. Second, we will perform a
manual investigation of the extracted changes. We plan to
use build configuration files of open source Java programs
to show that the approach can also extract changes of real-
world configurations properly. We will validate the extracted
changes of our approach by comparing them with the changes
retrieved by experienced developers. The expected results of
this work package are an approach to extract fine-grained build
changes, a preliminary evaluation of its performance, and an
application of the approach to understand the evolution of
build configurations.
Change Patterns (WP2). The goal of this work package is to
find changes that often appear together. We plan to extend
WP1 by investigating frequent patterns of build changes.
With the knowledge about frequent change patterns, we can
investigate their impact on build breakage. We suppose that
some changes and change patterns are more likely to be
involved in or cause build breakage than others. We plan to
obtain frequent change patterns by using well known methods,
such as the apriori algorithm, the eclat algorithm, and the fp-
growth algorithm. Furthermore, we plan to build each revision
of selected open source Java projects and classify the output
of the build log into build results. First, we will propose a
taxonomy of build results that refines the failing build category.
We argue that the well known categorization of build results
into successful or failing builds is too coarse-grained to study
the impact of changes or change patterns on the build result.
Second, we plan to propose an approach to automatically
classify the output of build logs into build results of our
taxonomy. We then link the changes and change patterns to
build results and investigate their impact.

We plan to evaluate the taxonomy and the classification with
card sorting. We will ask experienced developers to classify
the output of the build log to the categories of our taxonomy
and compare the results with our classification. We then plan
to calculate metrics, such as f-score and AUC, to measure the
performance of the classification and the interrater agreement
to show the agreement of the classification with the manual
investigations. Furthermore, we plan to evaluate the impact of

changes and change patterns on the build result by conducting
a survey with experienced developers. Besides other questions,
we will ask the developers if they agree with our findings and
if they experienced similar observations in their work. The
expected findings are changes and change patterns and their
impact on build results.
Bad and Best Practice Build Configuration (WP3). In WP3,
we plan to investigate the impact of changes and frequent
change patterns on the quality of the build configuration.
We first plan to propose a set of quality measures for build
configurations. We then investigate which properties of a build
configuration affect its quality in terms of maintainability or
likelihood to fail a build. Furthermore, we plan to use the
set of quality measures to examine whether we can find a
relation between particular changes or change patterns on
the quality of the build configuration. We aim at classifying
changes and change patterns into bad and best practice for
build configuration.

The quality measures will be evaluated using selected open
source Java projects. We plan to randomly select a sample of
build configurations from the version history of the projects.
We will give the sample to experienced developers and ask
them to estimate the proposed quality measures for each of
the samples. We then plan to compare the manually assigned
values with the values retrieved by our approach. To evaluate
the classification, we plan to ask developers and measure
their agreement with our classification. The expected results
of this work package are a set of quality measures for build
configurations and a classification of changes and change
patterns in terms of their impact on these quality measures.

B. Build Prediction (RQ2)

The goal of this research question is to predict the build re-
sult before the actual build has been performed to warn devel-
opers that their change set is likely to break the build. Current
research, such as [10, 19], uses two different approaches for
prediction. First, predicting potentially missing changes to the
build configuration (build co-change) and second, predicting
the build result itself. We divide this research question into
two work packages.
Build Co-Change Prediction (WP4). We already performed
a study on predicting build co-changes based on information
on the source code changes that have been performed and
commit categories [16]. This work is an extension to the work
of McIntosh et al. [19] and Xia et al. [24]. We extracted
change information and commit message information of 10
open source Java projects and built a random forest classifier
to predict build co-changes. We evaluated our models using a
repeated random sampling approach and well known metrics,
such as f-score and AUC. Our results show that we could
improve the state of the art classifier for intra- and cross-
project prediction by 11.54% and 9.46%, respectively. Further-
more, we observed that advanced resampling methods strongly
support the improvement.
Build Result Prediction (WP5). The goal of this work
package is to gain knowledge of the factors that impact the

build result and to build a model that predicts the build
result. This has already been investigated from other points
of view. For example, Kwan et al. [14] used socio-technical
congruence, and Wolf et al. [23] used coordination structures
of development teams to predict the build result. In contrast
to these studies, we plan to base the prediction models mainly
on changes.

We believe that notifying developers if their current change
set might break the build will improve the quality of the build
configuration and hence, decrease the number of breaking
builds. We plan to use general metrics of projects and commits
and detailed change information on source code and build
configuration to build the prediction model. Furthermore, we
will use classic machine learning approaches, such as random
forest or support vector machines, to build the prediction
model.

We plan to evaluate the resulting models with selected
open source Java projects and measure common performance
measures, such as f-score and AUC. Furthermore, we will use
cross fold validation to show the stability of the model. The
impact of the attributes of our model on the prediction result
will be evaluated by providing code snippets from open source
Java projects as a rationale. As a result, we expect a model
that predicts the build result based on our investigated metrics.
Furthermore, the model is expected to explain relations and
reasons for build breakage.

C. Build Repair (RQ3)

Our third research question aims at providing approaches to
improve the quality of the build configuration. We split this
research question into two work packages. WP6 focuses on
situations where the build configuration is likely to break a
build. We plan to propose an approach that restructures the
build configuration to improve its quality and hence, decrease
the likelihood of build breakage. WP7 deals with situations
where the build is already broken. We aim at providing
an approach that detects the reason for the breakage and
recommends a solution to repair the build.
Build Configuration Refactoring (WP6). Refactoring is a
well known action to transform code into semantically identi-
cal code to improve the structure and reduce error proneness
[7]. In this work package, we plan to use the knowledge of the
previous research questions to derive refactorings that improve
the quality of the build configuration. The refactorings will
be based on the findings of WP1, WP2, and WP3 regarding
the investigation of error-prone changes and change patterns.
Furthermore, we plan to use the findings of WP4 and WP5 to
identify build configurations that are likely to fail a build.

The planned evaluation of our approach is twofold. First,
we plan to evaluate our approach with the metrics which
we defined in WP3. We will list the target metrics which
will be improved by the respective refactoring and measure
them before and after the refactoring process to evaluate the
improvement. Second, we plan to ask developers if they agree
with the refactorings. The expected result of this work package
is an approach that identifies build configurations that are

likely to fail the build and recommends a set of refactorings to
improve the quality of the build configuration. We expect that
a build configuration with higher quality measure will reduce
the number of failing builds.
Build Configuration Repair (WP7). WP7 focuses on al-
ready broken builds. Similar to the intention of WP6, we
plan to learn refactorings from the previous work packages
WP1, WP2, and WP3. Contrary to WP6, we do not aim at
restructuring the build configuration to improve the quality of
the build configuration. Instead, we focus on repairing a failed
build. Automatic repair is also an open issue in many other
research areas e.g., automatically fixing bugs [22]. We aim at
learning actions by mining the version history of open source
Java projects to modify the build configuration in a way that
the build is successful again.

We will evaluate the approach first by checking how many
failing builds can be repaired and second, by comparing the
repair actions of our approach with repair actions that have
been performed by developers for the same failing build. The
expected result of this research question is an approach that
automatically repairs broken builds.

III. EXPECTED CONTRIBUTIONS AND IMPLICATIONS

In this section, we list the expected contributions and state
the expected implications on software development as well as
on research. The expected contributions are:

• Datasets containing extracted build changes of the in-
vestigated projects (WP1) and build results of the inves-
tigated projects (WP3).

• Rules retrieved by empirical evidence for bad and best
practices for build configurations (WP2, WP3).

• Models to predict build co-changing work items (WP4)
and to predict build results for commits and work items
(WP5).

• An approach to automatically refactor breakage-prone
builds (WP6) and repair broken builds (WP7).

We already performed an empirical study to improve the
prediction of build co-changes (WP4) which has been pub-
lished at SANER’16 [16]. We expect several implications of
our planned findings on software development and research.

For developers, we will provide approaches and tools that
will be integrated into the IDE of developers to support
software development and maintenance. We expect that our
contributions enable software developers to avoid build break-
age in their projects and to automatically repair failing builds.
Furthermore, we plan to derive rules from our investigations
for bad and best practices of build configurations which can
be used by developers to increase the quality of their build
configuration. This allows software development teams to
focus on their core business because they will not be blocked
by broken builds.

Concerning research, we will provide insights into the
evolution and maintenance of build configurations. Further-
more, we will make our datasets and prototype tools publicly
available so that researchers can use them and extend our
studies.

IV. RELATED WORK

Build breakage has already been studied in previous re-
search. Seo et al. [21] and Kerzazi et al. [12] studied builds at
large companies and found that 30% and 18%, respectively,
of the builds fail. Other studies aim at predicting the build
result. Wolf et al. [23] and Kwan et al. [14] built models
to predict the outcome of a build. They used coordination
structures of development teams of an IBM project and socio-
technical congruence, respectively, to predict the build result.

Build Maintenance and the co-evolution of build config-
uration with other artifacts has also been a topic of recent
research. Adams et al. developed MAKAO [1], a re(verse)-
engineering framework for build configurations. They found
that maintenance is the main driver for evolution and observed
that the complexity of a build system increases over time. Java
build systems have also been studied. For example McIntosh
et al. investigated the co-evolution of production and test
code with build configuration code [18]. They also found a
relationship between build technology and maintenance effort
in a follow-up work [20].

Previous research already developed tools to extract
changes from two versions of a file. Hashimoto and Mori
[9] developed Diff/TS. Their approach uses the raw Abstract
Syntax Tree (AST) to extract the changes. Another approach
that uses the AST is ChangeDistiller of Fluri et al. [6]. This
approach extracts differences from two consecutive versions
of a Java file and maps the differences to 48 different change
types [4]. ChangeDistiller was improved by the GumTree
approach of Falleri et al. [3] that scans the AST in two
directions to generate the differences.

Automatic repair has been studied for programs by Weimer
et al. [22]. They proposed GenProg, a tool to repair programs.
Le Goues et al. [15] studied the number of bugs that can be
fixed automatically with GenProg and the costs of the fixes.

REFERENCES

[1] Bram Adams, Herman Tromp, Kris De Schutter, and Wolf-
gang De Meuter. Design recovery and maintenance of build
systems. In Proc. of Intl. Conf. on Software Maintenance, pages
114–123. IEEE, 2007.

[2] John W. Creswell. Research design: Qualitative, quantitative,
and mixed methods approaches. SAGE publications, 2013.

[3] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias
Martinez, and Martin Monperrus. Fine-grained and accurate
source code differencing. In Proc. of Intl. Conf. on Automated
Software Engineering, pages 313–324. ACM, 2014.

[4] Beat Fluri and Harald C. Gall. Classifying change types for
qualifying change couplings. In Proc. of Intl. Conf. on Program
Comprehension, pages 35–45. IEEE, 2006.

[5] Beat Fluri, Michael Würsch, Emanuel Giger, and Harald C.
Gall. Analyzing the co-evolution of comments and source code.
Software Quality Journal, 17(4):367–394, 2009.

[6] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall.
Change distilling: Tree differencing for fine-grained source
code change extraction. Transactions on Software Engineering,
33(11):725–743, 2007.

[7] Martin Fowler, Kent Beck, J Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the design of existing
programs. Addison-Wesley Reading, 1999.

[8] E. Giger, M. Pinzger, and H. C. Gall. Can we predict types of
code changes? an empirical analysis. In Proc. of Work. Conf.
of Mining Software Repositories, pages 217–226. IEEE, 2012.

[9] Masatomo Hashimoto and Akira Mori. Diff/TS: a tool for fine-
grained structural change analysis. In Proc. of Work. Conf. on
Reverse Engineering, pages 279–288. IEEE, 2008.

[10] Ahmed E Hassan and Ken Zhang. Using decision trees to
predict the certification result of a build. In Proc. of Intl. Conf.
on Automated Software Engineering, pages 189–198. IEEE,
2006.

[11] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha
Ram. Design science in information systems research. MIS Q.,
28(1):75–105, March 2004.

[12] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why
do automated builds break? an empirical study. In Proc. of Intl.
Conf. on Software Maintenance and Evolution, pages 41–50.
IEEE, 2014.

[13] Gary Kumfert and Tom Epperly. Software in the doe: The
hidden overhead of the build. Lawrence Livermore National
Laboratory, Technical Report, 2002.

[14] Irwin Kwan, Adrian Schroter, and Daniela Damian. Does socio-
technical congruence have an effect on software build success?
a study of coordination in a software project. IEEE Transactions
on Software Engineering, 37(3):307–324, 2011.

[15] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and
Westley Weimer. A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8 each. In Proc. of Intl.
Conf. on Software Engineering, pages 3–13. IEEE, 2012.

[16] Christian Macho, Shane McIntosh, and Martin Pinzger. Predict-
ing Build Co-Changes with Source Code Change and Commit
Categories. In Proc. of Intl. Conf. on Software Analysis,
Evolution, and Reengineering, pages 541–551. IEEE, 2016.

[17] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The
evolution of ANT build systems. In Proc. of Int. Work. Conf.
on Mining Software Repositories, pages 42–51. IEEE, 2010.

[18] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The evo-
lution of java build systems. Empirical Software Engineering,
17(4-5):578–608, 2012.

[19] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and
Ahmed E. Hassan. Mining co-change information to understand
when build changes are necessary. In Proc. of Intl. Conf. on
Software Maintenance and Evolution, pages 241–250. IEEE,
2014.

[20] Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris
Mockus, and Ahmed E. Hassan. A large-scale empirical
study of the relationship between build technology and build
maintenance. Empirical Software Engineering, 20(6):1587–
1633, 2015.

[21] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward
Aftandilian, and Robert Bowdidge. Programmers’ build errors:
a case study (at google). In Proc. of Intl. Conf. on Software
Engineering, pages 724–734. ACM, 2014.

[22] Westley Weimer, Stephanie Forrest, Claire Le Goues, and
ThanhVu Nguyen. Automatic program repair with evolutionary
computation. Communications of the ACM, 53(5):109–116,
2010.

[23] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh
Nguyen. Predicting build failures using social network analysis
on developer communication. In Proc. of Intl. Conf. on Software
Engineering, pages 1–11. IEEE, 2009.

[24] Xin Xia, David Lo, Shane McIntosh, Emad Shihab, and
Ahmed E. Hassan. Cross-project build co-change prediction.
In Proc. of Intl. Conf. on Software Analysis, Evolution, and
Reengineering, pages 311–320. IEEE, 2015.

	Problem Statement
	Research Approach
	Reasons and Characteristics of Build Breakage (RQ1)
	Build Prediction (RQ2)
	Build Repair (RQ3)

	Expected Contributions and Implications
	Related Work

