
Preventing and Repairing Build Breakage -
Extended Abstract

Christian Macho
Software Engineering Research Group

University of Klagenfurt
Email: christian.macho@aau.at

Build systems are an essential component in modern soft-
ware engineering. They are used to automate tasks of the
software development lifecycle, such as compiling code, as-
sembling artifacts, generating documentation, testing artifacts,
and deploying artifacts. Although they play an important role
in software development, research has ignored this field for a
long time. Recent research, such as [9], started to investigate
build systems as a component of the software development
lifecycle. Kumpfert et al. observed that using a build system
decreases the workload of developers but its usage also adds
additional overhead for maintaining the build configuration
[7]. Seo et al. addressed this issue and found that neglected
maintenance of the build configuration is one of the most
frequent reasons for breaking a build [10]. Kerzazi et al.
found that suffering from build breakage blocks development
teams from continuing their work and consequently costs the
companies money [6]. Moreover, Seo et al. and Kerzazi et al.
investigated the number of failing builds and obvserved a high
ratio of build breakage (28.5% and 17.7%, respectively).

The reasons for build breakage and solutions to avoid and
fix build breakage are still open issues. Hence, the objective
of the thesis is to understand build breakage and to reduce
the number of failing builds. First, we plan to investigate
changes to the build configuration to reveal the reasons of
build breakage. Second, we will build prediction models to
explain and predict build breakage. Finally, we will investigate
an approach that avoids build breakage and an approach that
fixes failing builds. Our research is based on the following
main hypothesis:
With a better understanding of how and why builds break,
we can improve the quality of build configurations to reduce
the number of failing builds.

We divide our research into three main research questions
(RQ) and seven work packages (WP) described in the follow-
ing. We will follow the idea of design science research [5].
To that extent, we will build prototypes and evaluate the ap-
proaches with the prototypes. The evaluation will be twofold,
following a mixed methods approach [1]. First, we plan to
use quantitative methods, such as random forest, or frequent
item set mining, and second, qualitative methods, such as card
sorting, or surveys. We plan to use open source Java projects
to evaluate our prototypes. We restrict our studies to Apache
Maven, a state of the art build system that is widely used, and
leave it to future work to study other build systems.

RQ 1 consists of three work packages and focuses on the
properties and characteristics of build breakage. We plan to
study why build breakage happens and which changes or
change patterns are often involved in build breakage. To that
extent, we will mine the version history of selected projects
to reveal the relation between changes and build breakage.
Build Changes (WP1). The goal of this work package is to in-
vestigate which changes are applied to the build configuration
to understand its evolution. We plan to develop an approach
to extract fine-grained changes from build configurations in
analogy to ChangeDistiller for Java because prior studies using
ChangeDistiller showed that the fine-grained representation of
changes helped to improve studies [2]. However, we are the
first to extract build code changes from build configurations.
We believe that the fine-grained build changes will help to
understand the evolution of build configurations and contribute
to the knowledge of understanding build breakage. The evalua-
tion of our approach will be twofold by providing an extensive
tests suite to show that our approach can extract each change
type properly, and by performing a manual investigation of the
extracted changes of real world configurations.
Change Patterns (WP2). The goal of this work package
is to find changes that often appear together. We plan to
extend WP1 by investigating frequent patterns of build changes
retrieved by well known algorithms, such as the apriori algo-
rithm. With this knowledge, we can investigate their impact on
build breakage. Furthermore, we plan to build each revision of
selected open source Java projects and classify the output of
the build log into build results. We will propose an approach
to automatically classify the output of build logs into build
results of our taxonomy. We then link the changes and change
patterns to build results and investigate their impact. We
plan to evaluate the taxonomy and the classification with
card sorting and common metrics, such as f-score and AUC.
Furthermore, we plan to evaluate the impact of changes and
change patterns on the build result by conducting a survey
with experienced developers.
Bad and Best Practice Build Configuration (WP3). In WP3,
we plan to investigate the impact of frequent change patterns
on the quality of the build configuration. We first plan to
propose a set of quality measures for build configurations.
We then investigate which properties of a build configuration
affect its quality in terms of maintainability or likelihood to
fail a build. Furthermore, we plan to use the set of quality



measures to examine whether we can find a relation between
change patterns and build configuration quality. We aim at
classifying change patterns into bad and best practice for
build configuration. The quality measures will be evaluated
by experienced developers. We plan to compare the manually
assigned values with the values retrieved by our approach
and measure the agreement. The expected results of this work
package are a set of quality measures for build configurations
and a classification of change patterns in terms of their impact
on these quality measures.
The goal of RQ2 is to predict the build result before the
actual build has been performed. Current research, such as [4],
uses two different approaches for prediction. First, predicting
potentially missing changes to the build configuration and
second, predicting the build result.
Build Co-Change Prediction (WP4). We already performed
a study on predicting build co-changes based on information
of the source code changes and commit categories [8]. We
extracted change information and commit message information
of 10 open source Java projects and built a random forest
classifier to predict build co-changes. We evaluated our models
using a repeated random sampling approach and well known
metrics, such as f-score and AUC. Our results show that we
could improve the state of the art classifier for intra- and cross-
project prediction by 11.54% and 9.46%, respectively.
Build Result Prediction (WP5). The goal of this work
package is to gain knowledge of the factors that impact the
build result and to build a model that predicts the build result.
This has already been investigated from other points of view
e.g., using social network metrics. However, we plan to base
the prediction models mainly on changes. We believe that
notifying developers if their current change set might break
the build will improve the quality of the build configuration
and hence, decrease the number of breaking builds. We will
use change and general metrics, and classic machine learning
approaches, such as random forest or support vector machines,
to build the prediction model. We plan to evaluate the resulting
models with selected open source Java projects and measure
common performance measures, such as f-score and AUC.
Furthermore, we will use cross fold validation to show the
stability of the model.

RQ 3 aims at providing approaches to improve the quality of
the build configuration. We split this research question into two
work packages. First, we plan to improve the quality of build
configurations by refactoring and second, we aim at repairing
broken build configurations.
Build Configuration Refactoring (WP6). Refactoring is a
well known action to transform code into semantically iden-
tical code to improve the structure and reduce error prone-
ness [3]. In this work package, we plan to use the knowledge
of the previous research questions to derive refactorings that
improve the quality of the build configuration. The refactorings
will be based on the findings of WP1, WP2, and WP3
regarding the investigation of error-prone changes and change
patterns. Furthermore, we plan to use the findings of WP4
and WP5 to identify build configurations that are likely to fail

a build. The planned evaluation of our approach is twofold.
First, we plan to evaluate our approach with the metrics which
we defined in WP3 to measure the improvement. Second, we
plan to ask developers if they agree with the refactorings.
The expected result of this work package is an approach
that identifies smelly build configurations and recommends
refactorings to improve the quality of the build configuration.
We expect that a build configuration with higher quality
measure will reduce the number of failing builds.
Build Configuration Repair (WP7). Contrary to WP6, we
do not aim at restructuring the build configuration to improve
the quality of the build configuration but focus on repairing a
failed build. Automatic repair is also an open issue in many
other research areas e.g., automatically fixing bugs [11]. We
aim at learning actions by mining the version history of open
source Java projects to modify the build configuration in a
way that the build is successful again. We will evaluate the
approach first by checking how many failing builds can be
repaired and second, by comparing the repair actions of our
approach with repair actions that have been performed by
developers for the same failing build. The expected result of
this research question is an approach that automatically repairs
broken builds.

We expect several implications of our planned findings
on software development and research. For developers, we
will provide approaches and tools that will be integrated into
the IDE of developers to support software development and
maintenance. We expect that our contributions enable software
developers to avoid build breakage in their projects and to
automatically repair failing builds. Furthermore, we plan to
derive rules from our investigations for bad and best practices
of build configurations which can be used by developers to
increase the quality of their build configuration. This allows
software development teams to focus on their core business
because they will not be blocked by broken builds. Concerning
research, we will provide insights into the evolution and
maintenance of build configurations.

REFERENCES
[1] John W. Creswell. Research design: Qualitative, quantitative, and mixed methods

approaches. SAGE publications, 2013.
[2] Beat Fluri, Michael Würsch, Emanuel Giger, and Harald C. Gall. Analyzing the

co-evolution of comments and source code. SQJ, 17(4):367–394, 2009.
[3] Martin Fowler, Kent Beck, J Brant, William Opdyke, and Don Roberts. Refactoring:

Improving the design of existing programs. Addison-Wesley Reading, 1999.
[4] Ahmed E Hassan and Ken Zhang. Using decision trees to predict the certification

result of a build. In ASE, pages 189–198. IEEE, 2006.
[5] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science

in information systems research. MIS Q., 28(1):75–105, March 2004.
[6] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why do automated builds

break? an empirical study. In Proc. of Intl. Conf. on Software Maintenance and
Evolution, pages 41–50. IEEE, 2014.

[7] Gary Kumfert and Tom Epperly. Software in the doe: The hidden overhead of the
build. Lawrence Livermore National Laboratory, Technical Report, 2002.

[8] Christian Macho, Shane McIntosh, and Martin Pinzger. Predicting Build Co-
Changes with Source Code Change and Commit Categories. In Intl. Conf. on
Software Analysis, Evolution, and Reengineering, pages 541–551. IEEE, 2016.

[9] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The evolution of java build
systems. Empirical Software Engineering, 17(4-5):578–608, 2012.

[10] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. Programmers’ build errors: a case study (at google). In Proc.
of Intl. Conf. on Software Engineering, pages 724–734. ACM, 2014.

[11] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen.
Automatic program repair with evolutionary computation. Communications of the
ACM, 53(5):109–116, 2010.


